Bayesian Analysis of Between-Group Differences in Variance Components in Hierarchical Generalized Linear Models
نویسنده
چکیده
Frequentist approaches to making inferences about the variances of random cluster effects in hierarchical generalized linear models (HGLMs) for non-normal variables have several limitations. These include reliance on asymptotic theory, questionable properties of classical likelihood ratio tests when pseudo-likelihood methods are used for estimation, and a failure to account for uncertainty in the estimation of features of prior distributions for model parameters. This paper compares and contrasts alternative approaches to making a specific type of inference about the variance components in an HGLM, focusing on the difference in variance components between two independent groups of clusters. A Bayesian approach to making inferences about these types of differences is proposed that circumvents many of the problems associated with alternative frequentist approaches. The Bayesian approach and alternative frequentist approaches are applied to an analysis of real survey data collected in the Continuous National Survey of Family Growth (NSFG). The primary analytic question of interest concerns differences in the variances of random interviewer effects between two independent groups of interviewers, which may indicate that particular subsets of interviewers are having adverse effects on the quality of the survey data. Inferences regarding differences in interviewer variance components are shown to vary depending on the approach taken, with significant differences suggested by problematic frequentist analyses no longer evident when applying more appropriate Bayesian analysis methods.
منابع مشابه
Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models.
The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory...
متن کاملNon-linear Bayesian prediction of generalized order statistics for liftime models
In this paper, we obtain Bayesian prediction intervals as well as Bayes predictive estimators under square error loss for generalized order statistics when the distribution of the underlying population belongs to a family which includes several important distributions.
متن کاملGenetic Properties of Some Economic Traits in Isfahan Native Fowl Using Bayesian and REML Methods
The objective of the present study was to estimate heritability values for some performance and egg quality traits of native fowl in Isfahan breeding center using REML and Bayesian approaches. The records were about 51521 and 975 for performance and egg quality traits, respectively. At the first step, variance components were estimated for body weight at hatch (BW0), body weight at 8 weeks of a...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کامل